|
| 1: |
|
O(0) |
→ 0 |
| 2: |
|
0 + x |
→ x |
| 3: |
|
x + 0 |
→ x |
| 4: |
|
O(x) + O(y) |
→ O(x + y) |
| 5: |
|
O(x) + I(y) |
→ I(x + y) |
| 6: |
|
I(x) + O(y) |
→ I(x + y) |
| 7: |
|
I(x) + I(y) |
→ O((x + y) + I(0)) |
| 8: |
|
x + (y + z) |
→ (x + y) + z |
| 9: |
|
x - 0 |
→ x |
| 10: |
|
0 - x |
→ 0 |
| 11: |
|
O(x) - O(y) |
→ O(x - y) |
| 12: |
|
O(x) - I(y) |
→ I((x - y) - I(1)) |
| 13: |
|
I(x) - O(y) |
→ I(x - y) |
| 14: |
|
I(x) - I(y) |
→ O(x - y) |
| 15: |
|
not(true) |
→ false |
| 16: |
|
not(false) |
→ true |
| 17: |
|
and(x,true) |
→ x |
| 18: |
|
and(x,false) |
→ false |
| 19: |
|
if(true,x,y) |
→ x |
| 20: |
|
if(false,x,y) |
→ y |
| 21: |
|
ge(O(x),O(y)) |
→ ge(x,y) |
| 22: |
|
ge(O(x),I(y)) |
→ not(ge(y,x)) |
| 23: |
|
ge(I(x),O(y)) |
→ ge(x,y) |
| 24: |
|
ge(I(x),I(y)) |
→ ge(x,y) |
| 25: |
|
ge(x,0) |
→ true |
| 26: |
|
ge(0,O(x)) |
→ ge(0,x) |
| 27: |
|
ge(0,I(x)) |
→ false |
| 28: |
|
Log'(0) |
→ 0 |
| 29: |
|
Log'(I(x)) |
→ Log'(x) + I(0) |
| 30: |
|
Log'(O(x)) |
→ if(ge(x,I(0)),Log'(x) + I(0),0) |
| 31: |
|
Log(x) |
→ Log'(x) - I(0) |
| 32: |
|
Val(L(x)) |
→ x |
| 33: |
|
Val(N(x,l,r)) |
→ x |
| 34: |
|
Min(L(x)) |
→ x |
| 35: |
|
Min(N(x,l,r)) |
→ Min(l) |
| 36: |
|
Max(L(x)) |
→ x |
| 37: |
|
Max(N(x,l,r)) |
→ Max(r) |
| 38: |
|
BS(L(x)) |
→ true |
| 39: |
|
BS(N(x,l,r)) |
→ and(and(ge(x,Max(l)),ge(Min(r),x)),and(BS(l),BS(r))) |
| 40: |
|
Size(L(x)) |
→ I(0) |
| 41: |
|
Size(N(x,l,r)) |
→ (Size(l) + Size(r)) + I(1) |
| 42: |
|
WB(L(x)) |
→ true |
| 43: |
|
WB(N(x,l,r)) |
→ and(if(ge(Size(l),Size(r)),ge(I(0),Size(l) - Size(r)),ge(I(0),Size(r) - Size(l))),and(WB(l),WB(r))) |
|
There are 57 dependency pairs:
|
| 44: |
|
O(x) +# O(y) |
→ O#(x + y) |
| 45: |
|
O(x) +# O(y) |
→ x +# y |
| 46: |
|
O(x) +# I(y) |
→ x +# y |
| 47: |
|
I(x) +# O(y) |
→ x +# y |
| 48: |
|
I(x) +# I(y) |
→ O#((x + y) + I(0)) |
| 49: |
|
I(x) +# I(y) |
→ (x + y) +# I(0) |
| 50: |
|
I(x) +# I(y) |
→ x +# y |
| 51: |
|
x +# (y + z) |
→ (x + y) +# z |
| 52: |
|
x +# (y + z) |
→ x +# y |
| 53: |
|
O(x) -# O(y) |
→ O#(x - y) |
| 54: |
|
O(x) -# O(y) |
→ x -# y |
| 55: |
|
O(x) -# I(y) |
→ (x - y) -# I(1) |
| 56: |
|
O(x) -# I(y) |
→ x -# y |
| 57: |
|
I(x) -# O(y) |
→ x -# y |
| 58: |
|
I(x) -# I(y) |
→ O#(x - y) |
| 59: |
|
I(x) -# I(y) |
→ x -# y |
| 60: |
|
GE(O(x),O(y)) |
→ GE(x,y) |
| 61: |
|
GE(O(x),I(y)) |
→ NOT(ge(y,x)) |
| 62: |
|
GE(O(x),I(y)) |
→ GE(y,x) |
| 63: |
|
GE(I(x),O(y)) |
→ GE(x,y) |
| 64: |
|
GE(I(x),I(y)) |
→ GE(x,y) |
| 65: |
|
GE(0,O(x)) |
→ GE(0,x) |
| 66: |
|
Log'#(I(x)) |
→ Log'(x) +# I(0) |
| 67: |
|
Log'#(I(x)) |
→ Log'#(x) |
| 68: |
|
Log'#(O(x)) |
→ IF(ge(x,I(0)),Log'(x) + I(0),0) |
| 69: |
|
Log'#(O(x)) |
→ GE(x,I(0)) |
| 70: |
|
Log'#(O(x)) |
→ Log'(x) +# I(0) |
| 71: |
|
Log'#(O(x)) |
→ Log'#(x) |
| 72: |
|
Log#(x) |
→ Log'(x) -# I(0) |
| 73: |
|
Log#(x) |
→ Log'#(x) |
| 74: |
|
Min#(N(x,l,r)) |
→ Min#(l) |
| 75: |
|
Max#(N(x,l,r)) |
→ Max#(r) |
| 76: |
|
BS#(N(x,l,r)) |
→ AND(and(ge(x,Max(l)),ge(Min(r),x)),and(BS(l),BS(r))) |
| 77: |
|
BS#(N(x,l,r)) |
→ AND(ge(x,Max(l)),ge(Min(r),x)) |
| 78: |
|
BS#(N(x,l,r)) |
→ GE(x,Max(l)) |
| 79: |
|
BS#(N(x,l,r)) |
→ Max#(l) |
| 80: |
|
BS#(N(x,l,r)) |
→ GE(Min(r),x) |
| 81: |
|
BS#(N(x,l,r)) |
→ Min#(r) |
| 82: |
|
BS#(N(x,l,r)) |
→ AND(BS(l),BS(r)) |
| 83: |
|
BS#(N(x,l,r)) |
→ BS#(l) |
| 84: |
|
BS#(N(x,l,r)) |
→ BS#(r) |
| 85: |
|
Size#(N(x,l,r)) |
→ (Size(l) + Size(r)) +# I(1) |
| 86: |
|
Size#(N(x,l,r)) |
→ Size(l) +# Size(r) |
| 87: |
|
Size#(N(x,l,r)) |
→ Size#(l) |
| 88: |
|
Size#(N(x,l,r)) |
→ Size#(r) |
| 89: |
|
WB#(N(x,l,r)) |
→ AND(if(ge(Size(l),Size(r)),ge(I(0),Size(l) - Size(r)),ge(I(0),Size(r) - Size(l))),and(WB(l),WB(r))) |
| 90: |
|
WB#(N(x,l,r)) |
→ IF(ge(Size(l),Size(r)),ge(I(0),Size(l) - Size(r)),ge(I(0),Size(r) - Size(l))) |
| 91: |
|
WB#(N(x,l,r)) |
→ GE(Size(l),Size(r)) |
| 92: |
|
WB#(N(x,l,r)) |
→ GE(I(0),Size(l) - Size(r)) |
| 93: |
|
WB#(N(x,l,r)) |
→ Size(l) -# Size(r) |
| 94: |
|
WB#(N(x,l,r)) |
→ GE(I(0),Size(r) - Size(l)) |
| 95: |
|
WB#(N(x,l,r)) |
→ Size(r) -# Size(l) |
| 96: |
|
WB#(N(x,l,r)) |
→ Size#(r) |
| 97: |
|
WB#(N(x,l,r)) |
→ Size#(l) |
| 98: |
|
WB#(N(x,l,r)) |
→ AND(WB(l),WB(r)) |
| 99: |
|
WB#(N(x,l,r)) |
→ WB#(l) |
| 100: |
|
WB#(N(x,l,r)) |
→ WB#(r) |
|
The approximated dependency graph contains 5 SCCs:
{65},
{45-47,49-52},
{54-57,59},
{60,62-64}
and {67,71}.